skip to main content


Search for: All records

Creators/Authors contains: "Sahu, Ayaskanta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The chemical versatility and rich phase behavior of tin phosphides has led to interest in their use for a wide range of applications including optoelectronics, thermoelectrics, and electrocatalysis. However, researchers have identified few viable routes to high-quality, phase-pure, and phase-controlled tin phosphides. An outstanding issue is the small library of phosphorus precursors available for synthesis of metal phosphides. We demonstrated that inexpensive, commercially available, and environmentally benign aminophosphines can generate various phases of colloidal tin phosphides. We manipulated solvent concentrations, precursor identities, and growth conditions to obtain Sn 3 P 4 , SnP, and Sn 4 P 3 nanocrystals. We performed a combination of X-ray diffraction and transmission electron microscopy to determine the phase purity of our samples. X-ray absorption spectroscopy provided detailed analyses of the local structures of the tin phosphides. 
    more » « less
  2. Over the past decade, Ag 2 Se has attracted increasing attention due to its potentially excellent thermoelectric (TE) performance as an n-type semiconductor. It has been considered a promising alternative to Bi–Te alloys and other commonly used yet toxic and/or expensive TE materials. To optimize the TE performance of Ag 2 Se, recent research has focused on fabricating nanosized Ag 2 Se. However, synthesizing Ag 2 Se nanoparticles involves energy-intensive and time-consuming techniques with poor yield of final product. In this work, we report a low-cost, solution-processed approach that enables the formation of Ag 2 Se thin films from Cu 2−x Se template films via cation exchange at room temperature. Our simple two-step method involves fabricating Cu 2−x Se thin films by the thiol-amine dissolution of bulk Cu 2 Se, followed by soaking Cu 2−x Se films in AgNO 3 solution and annealing to form Ag 2 Se. We report an average power factor (PF) of 617 ± 82 μW m −1 K −2 and a corresponding ZT value of 0.35 at room temperature. We obtained a maximum PF of 825 μW m −1 K −2 and a ZT value of 0.46 at room temperature for our best-performing Ag 2 Se thin-film after soaking for 5 minutes. These high PFs have been achieved via full solution processing without hot-pressing. 
    more » « less